Apical maxi-K (KCa1.1) channels mediate K+ secretion by the mouse submandibular exocrine gland.

نویسندگان

  • Tetsuji Nakamoto
  • Victor G Romanenko
  • Atsushi Takahashi
  • Ted Begenisich
  • James E Melvin
چکیده

The exocrine salivary glands of mammals secrete K+ by an unknown pathway that has been associated with HCO3(-) efflux. However, the present studies found that K+ secretion in the mouse submandibular gland did not require HCO3(-), demonstrating that neither K+/HCO3(-) cotransport nor K+/H+ exchange mechanisms were involved. Because HCO3(-) did not appear to participate in this process, we tested whether a K channel is required. Indeed, K+ secretion was inhibited >75% in mice with a null mutation in the maxi-K, Ca2+-activated K channel (KCa1.1) but was unchanged in mice lacking the intermediate-conductance IKCa1 channel (KCa3.1). Moreover, paxilline, a specific maxi-K channel blocker, dramatically reduced the K+ concentration in submandibular saliva. The K+ concentration of saliva is well known to be flow rate dependent, the K+ concentration increasing as the flow decreases. The flow rate dependence of K+ secretion was nearly eliminated in KCa1.1 null mice, suggesting an important role for KCa1.1 channels in this process as well. Importantly, a maxi-K-like current had not been previously detected in duct cells, the theoretical site of K+ secretion, but we found that KCa1.1 channels localized to the apical membranes of both striated and excretory duct cells, but not granular duct cells, using immunohistochemistry. Consistent with this latter observation, maxi-K currents were not detected in granular duct cells. Taken together, these results demonstrate that the secretion of K+ requires and is likely mediated by KCa1.1 potassium channels localized to the apical membranes of striated and excretory duct cells in the mouse submandibular exocrine gland.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple transcripts of anoctamin genes expressed in the mouse submandibular salivary gland

PURPOSE Salivary fluid formation is primarily driven by Ca(2+)-activated, apical efflux of chloride into the lumen of the salivary acinus. The anoctamin1 protein is an anion channel with properties resembling the endogenous calcium-activated chloride channels. In order to better understand the role of anoctamin proteins in salivary exocrine secretion, the expression of the ten members of the an...

متن کامل

Tmem16A encodes the Ca2+-activated Cl- channel in mouse submandibular salivary gland acinar cells.

Activation of an apical Ca(2+)-dependent Cl(-) channel (CaCC) is the rate-limiting step for fluid secretion in many exocrine tissues. Here, we compared the properties of native CaCC in mouse submandibular salivary gland acinar cells to the Ca(2+)-gated Cl(-) currents generated by Tmem16A and Best2, members from two distinct families of Ca(2+)-activated Cl(-) channels found in salivary glands. H...

متن کامل

Intact colonic KC a1.1 channel activity in KCNMB2 knockout mice

Mammalian potassium homeostasis results from tightly regulated renal and colonic excretion, which balances the unregulated dietary K+ intake. Colonic K+ secretion follows the pump-leak model, in which the large conductance Ca2+-activated K+ channel (KCa1.1) is well established as the sole, but highly regulated apical K+ conductance. The physiological importance of auxiliary β and γ subunits of ...

متن کامل

یافته های تازه درباره سلولهای پاریتال معده

During the last five years the recognition of ionic channels in the parietal cells of stomach and acid chloride mechanisms of secretion by these cells has become totally clear by the "Patch Oamp" technique. The apical cytoplasm in the oxyntic cells are in the form of vesicles where membranes contain H+, K+ -ATPase pump. Stimulation causes fusion of these tubular vesicles with the cell membran o...

متن کامل

Apical Ca2+-activated potassium channels in mouse parotid acinar cells

Ca(2+) activation of Cl and K channels is a key event underlying stimulated fluid secretion from parotid salivary glands. Cl channels are exclusively present on the apical plasma membrane (PM), whereas the localization of K channels has not been established. Mathematical models have suggested that localization of some K channels to the apical PM is optimum for fluid secretion. A combination of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 294 3  شماره 

صفحات  -

تاریخ انتشار 2008